ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.07615
11
24

An Efficient Multitask Neural Network for Face Alignment, Head Pose Estimation and Face Tracking

13 March 2021
Jiahao Xia
Haimin Zhang
S. Wen
Shuo Yang
Min Xu
    CVBM
ArXivPDFHTML
Abstract

While Convolutional Neural Networks (CNNs) have significantly boosted the performance of face related algorithms, maintaining accuracy and efficiency simultaneously in practical use remains challenging. The state-of-the-art methods employ deeper networks for better performance, which makes it less practical for mobile applications because of more parameters and higher computational complexity. Therefore, we propose an efficient multitask neural network, Alignment & Tracking & Pose Network (ATPN) for face alignment, face tracking and head pose estimation. Specifically, to achieve better performance with fewer layers for face alignment, we introduce a shortcut connection between shallow-layer and deep-layer features. We find the shallow-layer features are highly correspond to facial boundaries that can provide the structural information of face and it is crucial for face alignment. Moreover, we generate a cheap heatmap based on the face alignment result and fuse it with features to improve the performance of the other two tasks. Based on the heatmap, the network can utilize both geometric information of landmarks and appearance information for head pose estimation. The heatmap also provides attention clues for face tracking. The face tracking task also saves us the face detection procedure for each frame, which also significantly boost the real-time capability for video-based tasks. We experimentally validate ATPN on four benchmark datasets, WFLW, 300VW, WIDER Face and 300W-LP. The experimental results demonstrate that it achieves better performance with much less parameters and lower computational complexity compared to other light models.

View on arXiv
Comments on this paper