ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.08277
87
1

Representation Theorem for Matrix Product States

15 March 2021
Erdong Guo
D. Draper
ArXiv (abs)PDFHTML
Abstract

In this work, we investigate the universal representation capacity of the Matrix Product States (MPS) from the perspective of boolean functions and continuous functions. We show that MPS can accurately realize arbitrary boolean functions by providing a construction method of the corresponding MPS structure for an arbitrarily given boolean gate. Moreover, we prove that the function space of MPS with the scale-invariant sigmoidal activation is dense in the space of continuous functions defined on a compact subspace of the nnn-dimensional real coordinate space Rn\mathbb{R^{n}}Rn. We study the relation between MPS and neural networks and show that the MPS with a scale-invariant sigmoidal function is equivalent to a one-hidden-layer neural network equipped with a kernel function. We construct the equivalent neural networks for several specific MPS models and show that non-linear kernels such as the polynomial kernel which introduces the couplings between different components of the input into the model appear naturally in the equivalent neural networks. At last, we discuss the realization of the Gaussian Process (GP) with infinitely wide MPS by studying their equivalent neural networks.

View on arXiv
Comments on this paper