Sticky PDMP samplers for sparse and local inference problems

We construct a new class of efficient Monte Carlo methods based on continuous-time piecewise deterministic Markov processes (PDMPs) suitable for inference in high dimensional sparse models, i.e. models for which there is prior knowledge that many coordinates are likely to be exactly . This is achieved with the fairly simple idea of endowing existing PDMP samplers with 'sticky' coordinate axes, coordinate planes etc. Upon hitting those subspaces, an event is triggered during which the process sticks to the subspace, this way spending some time in a sub-model. This results in non-reversible jumps between different (sub-)models. While we show that PDMP samplers in general can be made sticky, we mainly focus on the Zig-Zag sampler. The computational efficiency of our method (and implementation) is established through numerical experiments where both the sample size and the dimension of the parameter space are large.
View on arXiv