ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.09383
14
17

The planted matching problem: Sharp threshold and infinite-order phase transition

17 March 2021
Jian Ding
Yihong Wu
Jiaming Xu
Dana Yang
ArXivPDFHTML
Abstract

We study the problem of reconstructing a perfect matching M∗M^*M∗ hidden in a randomly weighted n×nn\times nn×n bipartite graph. The edge set includes every node pair in M∗M^*M∗ and each of the n(n−1)n(n-1)n(n−1) node pairs not in M∗M^*M∗ independently with probability d/nd/nd/n. The weight of each edge eee is independently drawn from the distribution P\mathcal{P}P if e∈M∗e \in M^*e∈M∗ and from Q\mathcal{Q}Q if e∉M∗e \notin M^*e∈/M∗. We show that if dB(P,Q)≤1\sqrt{d} B(\mathcal{P},\mathcal{Q}) \le 1d​B(P,Q)≤1, where B(P,Q)B(\mathcal{P},\mathcal{Q})B(P,Q) stands for the Bhattacharyya coefficient, the reconstruction error (average fraction of misclassified edges) of the maximum likelihood estimator of M∗M^*M∗ converges to 000 as n→∞n\to \inftyn→∞. Conversely, if dB(P,Q)≥1+ϵ\sqrt{d} B(\mathcal{P},\mathcal{Q}) \ge 1+\epsilond​B(P,Q)≥1+ϵ for an arbitrarily small constant ϵ>0\epsilon>0ϵ>0, the reconstruction error for any estimator is shown to be bounded away from 000 under both the sparse and dense model, resolving the conjecture in [Moharrami et al. 2019, Semerjian et al. 2020]. Furthermore, in the special case of complete exponentially weighted graph with d=nd=nd=n, P=exp⁡(λ)\mathcal{P}=\exp(\lambda)P=exp(λ), and Q=exp⁡(1/n)\mathcal{Q}=\exp(1/n)Q=exp(1/n), for which the sharp threshold simplifies to λ=4\lambda=4λ=4, we prove that when λ≤4−ϵ\lambda \le 4-\epsilonλ≤4−ϵ, the optimal reconstruction error is exp⁡(−Θ(1/ϵ))\exp\left( - \Theta(1/\sqrt{\epsilon}) \right)exp(−Θ(1/ϵ​)), confirming the conjectured infinite-order phase transition in [Semerjian et al. 2020].

View on arXiv
Comments on this paper