ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.09577
11
4

Theoretical bounds on data requirements for the ray-based classification

17 March 2021
Brian Weber
Sandesh S. Kalantre
T. McJunkin
Jacob M. Taylor
Justyna P. Zwolak
ArXivPDFHTML
Abstract

The problem of classifying high-dimensional shapes in real-world data grows in complexity as the dimension of the space increases. For the case of identifying convex shapes of different geometries, a new classification framework has recently been proposed in which the intersections of a set of one-dimensional representations, called rays, with the boundaries of the shape are used to identify the specific geometry. This ray-based classification (RBC) has been empirically verified using a synthetic dataset of two- and three-dimensional shapes (Zwolak et al. in Proceedings of Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada [December 11, 2020], arXiv:2010.00500, 2020) and, more recently, has also been validated experimentally (Zwolak et al., PRX Quantum 2:020335, 2021). Here, we establish a bound on the number of rays necessary for shape classification, defined by key angular metrics, for arbitrary convex shapes. For two dimensions, we derive a lower bound on the number of rays in terms of the shape's length, diameter, and exterior angles. For convex polytopes in RN\mathbb{R}^NRN, we generalize this result to a similar bound given as a function of the dihedral angle and the geometrical parameters of polygonal faces. This result enables a different approach for estimating high-dimensional shapes using substantially fewer data elements than volumetric or surface-based approaches.

View on arXiv
Comments on this paper