ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.10191
19
5

Decoupled Spatial Temporal Graphs for Generic Visual Grounding

18 March 2021
Qi Feng
Yunchao Wei
Mingming Cheng
Yi Yang
ArXivPDFHTML
Abstract

Visual grounding is a long-lasting problem in vision-language understanding due to its diversity and complexity. Current practices concentrate mostly on performing visual grounding in still images or well-trimmed video clips. This work, on the other hand, investigates into a more general setting, generic visual grounding, aiming to mine all the objects satisfying the given expression, which is more challenging yet practical in real-world scenarios. Importantly, grounding results are expected to accurately localize targets in both space and time. Whereas, it is tricky to make trade-offs between the appearance and motion features. In real scenarios, model tends to fail in distinguishing distractors with similar attributes. Motivated by these considerations, we propose a simple yet effective approach, named DSTG, which commits to 1) decomposing the spatial and temporal representations to collect all-sided cues for precise grounding; 2) enhancing the discriminativeness from distractors and the temporal consistency with a contrastive learning routing strategy. We further elaborate a new video dataset, GVG, that consists of challenging referring cases with far-ranging videos. Empirical experiments well demonstrate the superiority of DSTG over state-of-the-art on Charades-STA, ActivityNet-Caption and GVG datasets. Code and dataset will be made available.

View on arXiv
Comments on this paper