ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.11062
11
2

Leveraging Unlabeled Data for Entity-Relation Extraction through Probabilistic Constraint Satisfaction

20 March 2021
Kareem Ahmed
Eric Wang
Guy Van den Broeck
Kai-Wei Chang
    NAI
ArXivPDFHTML
Abstract

We study the problem of entity-relation extraction in the presence of symbolic domain knowledge. Such knowledge takes the form of an ontology defining relations and their permissible arguments. Previous approaches set out to integrate such knowledge in their learning approaches either through self-training, or through approximations that lose the precise meaning of the logical expressions. By contrast, our approach employs semantic loss which captures the precise meaning of a logical sentence through maintaining a probability distribution over all possible states, and guiding the model to solutions which minimize any constraint violations. With a focus on low-data regimes, we show that semantic loss outperforms the baselines by a wide margin.

View on arXiv
Comments on this paper