140
v1v2v3 (latest)

Meta-DETR: Image-Level Few-Shot Object Detection with Inter-Class Correlation Exploitation

Abstract

Few-shot object detection has been extensively investigated by incorporating meta-learning into region-based detection frameworks. Despite its success, the said paradigm is constrained by several factors, such as (i) low-quality region proposals for novel classes and (ii) negligence of the inter-class correlation among different classes. Such limitations hinder the generalization of base-class knowledge for the detection of novel-class objects. In this work, we design Meta-DETR, a novel few-shot detection framework that incorporates correlational aggregation for meta-learning into DETR detection frameworks. Meta-DETR works entirely at image level without any region proposals, which circumvents the constraint of inaccurate proposals in prevalent few-shot detection frameworks. Besides, Meta-DETR can simultaneously attend to multiple support classes within a single feed-forward. This unique design allows capturing the inter-class correlation among different classes, which significantly reduces the misclassification of similar classes and enhances knowledge generalization to novel classes. Experiments over multiple few-shot object detection benchmarks show that the proposed Meta-DETR outperforms state-of-the-art methods by large margins. The implementation codes will be released at https://github.com/ZhangGongjie/Meta-DETR.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.