ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.12499
15
4

Initializing ReLU networks in an expressive subspace of weights

23 March 2021
Dayal Singh
J. SreejithG
ArXivPDFHTML
Abstract

Using a mean-field theory of signal propagation, we analyze the evolution of correlations between two signals propagating forward through a deep ReLU network with correlated weights. Signals become highly correlated in deep ReLU networks with uncorrelated weights. We show that ReLU networks with anti-correlated weights can avoid this fate and have a chaotic phase where the signal correlations saturate below unity. Consistent with this analysis, we find that networks initialized with anti-correlated weights can train faster (in a teacher-student setting) by taking advantage of the increased expressivity in the chaotic phase. Combining this with a previously proposed strategy of using an asymmetric initialization to reduce dead node probability, we propose an initialization scheme that allows faster training and learning than the best-known initializations.

View on arXiv
Comments on this paper