ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.12676
16
141

Self-supervised representation learning from 12-lead ECG data

23 March 2021
Temesgen Mehari
Nils Strodthoff
    SSL
ArXivPDFHTML
Abstract

Clinical 12-lead electrocardiography (ECG) is one of the most widely encountered kinds of biosignals. Despite the increased availability of public ECG datasets, label scarcity remains a central challenge in the field. Self-supervised learning represents a promising way to alleviate this issue. In this work, we put forward the first comprehensive assessment of self-supervised representation learning from clinical 12-lead ECG data. To this end, we adapt state-of-the-art self-supervised methods based on instance discrimination and latent forecasting to the ECG domain. In a first step, we learn contrastive representations and evaluate their quality based on linear evaluation performance on a recently established, comprehensive, clinical ECG classification task. In a second step, we analyze the impact of self-supervised pretraining on finetuned ECG classifiers as compared to purely supervised performance. For the best-performing method, an adaptation of contrastive predictive coding, we find a linear evaluation performance only 0.5% below supervised performance. For the finetuned models, we find improvements in downstream performance of roughly 1% compared to supervised performance, label efficiency, as well as robustness against physiological noise. This work clearly establishes the feasibility of extracting discriminative representations from ECG data via self-supervised learning and the numerous advantages when finetuning such representations on downstream tasks as compared to purely supervised training. As first comprehensive assessment of its kind in the ECG domain carried out exclusively on publicly available datasets, we hope to establish a first step towards reproducible progress in the rapidly evolving field of representation learning for biosignals.

View on arXiv
Comments on this paper