ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.12926
16
3

Beyond Visual Attractiveness: Physically Plausible Single Image HDR Reconstruction for Spherical Panoramas

24 March 2021
Wei Wei
Li Guan
Yue Liu
Hao Kang
Haoxiang Li
Ying Nian Wu
G. Hua
    3DV
ArXivPDFHTML
Abstract

HDR reconstruction is an important task in computer vision with many industrial needs. The traditional approaches merge multiple exposure shots to generate HDRs that correspond to the physical quantity of illuminance of the scene. However, the tedious capturing process makes such multi-shot approaches inconvenient in practice. In contrast, recent single-shot methods predict a visually appealing HDR from a single LDR image through deep learning. But it is not clear whether the previously mentioned physical properties would still hold, without training the network to explicitly model them. In this paper, we introduce the physical illuminance constraints to our single-shot HDR reconstruction framework, with a focus on spherical panoramas. By the proposed physical regularization, our method can generate HDRs which are not only visually appealing but also physically plausible. For evaluation, we collect a large dataset of LDR and HDR images with ground truth illuminance measures. Extensive experiments show that our HDR images not only maintain high visual quality but also top all baseline methods in illuminance prediction accuracy.

View on arXiv
Comments on this paper