ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.13584
141
4
v1v2v3 (latest)

BERT4SO: Neural Sentence Ordering by Fine-tuning BERT

25 March 2021
Yutao Zhu
J. Nie
Kun Zhou
Shengchao Liu
Yabo Ling
Pan Du
ArXiv (abs)PDFHTML
Abstract

Sentence ordering aims to arrange the sentences of a given text in the correct order. Recent work frames it as a ranking problem and applies deep neural networks to it. In this work, we propose a new method, named BERT4SO, by fine-tuning BERT for sentence ordering. We concatenate all sentences and compute their representations by using multiple special tokens and carefully designed segment (interval) embeddings. The tokens across multiple sentences can attend to each other which greatly enhances their interactions. We also propose a margin-based listwise ranking loss based on ListMLE to facilitate the optimization process. Experimental results on five benchmark datasets demonstrate the effectiveness of our proposed method.

View on arXiv
Comments on this paper