ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.13612
13
1

THAT: Two Head Adversarial Training for Improving Robustness at Scale

25 March 2021
Zuxuan Wu
Tom Goldstein
L. Davis
Ser-Nam Lim
    AAML
    GAN
ArXivPDFHTML
Abstract

Many variants of adversarial training have been proposed, with most research focusing on problems with relatively few classes. In this paper, we propose Two Head Adversarial Training (THAT), a two-stream adversarial learning network that is designed to handle the large-scale many-class ImageNet dataset. The proposed method trains a network with two heads and two loss functions; one to minimize feature-space domain shift between natural and adversarial images, and one to promote high classification accuracy. This combination delivers a hardened network that achieves state of the art robust accuracy while maintaining high natural accuracy on ImageNet. Through extensive experiments, we demonstrate that the proposed framework outperforms alternative methods under both standard and "free" adversarial training settings.

View on arXiv
Comments on this paper