ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.13973
50
29
v1v2v3v4 (latest)

Learning Temporal Quantum Tomography

25 March 2021
Quoc Hoan Tran
Kohei Nakajima
ArXiv (abs)PDFHTML
Abstract

Quantifying and verifying the control level in preparing a quantum state are central challenges in building quantum devices. The quantum state is characterized from experimental measurements, using a procedure known as tomography, which requires a vast number of resources. Furthermore, the tomography for a quantum device with temporal processing, which is fundamentally different from the standard tomography, has not been formulated. We develop a practical and approximate tomography method using a recurrent machine learning framework for this intriguing situation. The method is based on repeated quantum interactions between a system called quantum reservoir with a stream of quantum states. Measurement data from the reservoir are connected to a linear readout to train a recurrent relation between quantum channels applied to the input stream. We demonstrate our algorithms for quantum learning tasks followed by the proposal of a quantum short-term memory capacity to evaluate the temporal processing ability of near-term quantum devices.

View on arXiv
Comments on this paper