ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.14217
9
11

Understanding Internet of Things Malware by Analyzing Endpoints in their Static Artifacts

26 March 2021
Afsah Anwar
Jinchun Choi
Abdulrahman Alabduljabbar
Hisham Alasmary
Jeffrey Spaulding
An Wang
Songqing Chen
Daehun Nyang
Amro Awad
David A. Mohaisen
ArXivPDFHTML
Abstract

The lack of security measures among the Internet of Things (IoT) devices and their persistent online connection gives adversaries a prime opportunity to target them or even abuse them as intermediary targets in larger attacks such as distributed denial-of-service (DDoS) campaigns. In this paper, we analyze IoT malware and focus on the endpoints reachable on the public Internet, that play an essential part in the IoT malware ecosystem. Namely, we analyze endpoints acting as dropzones and their targets to gain insights into the underlying dynamics in this ecosystem, such as the affinity between the dropzones and their target IP addresses, and the different patterns among endpoints. Towards this goal, we reverse-engineer 2,423 IoT malware samples and extract strings from them to obtain IP addresses. We further gather information about these endpoints from public Internet-wide scanners, such as Shodan and Censys. For the masked IP addresses, we examine the Classless Inter-Domain Routing (CIDR) networks accumulating to more than 100 million (78.2% of total active public IPv4 addresses) endpoints. Our investigation from four different perspectives provides profound insights into the role of endpoints in IoT malware attacks, which deepens our understanding of IoT malware ecosystems and can assist future defenses.

View on arXiv
Comments on this paper