ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.14869
11
1

Instance segmentation with the number of clusters incorporated in embedding learning

27 March 2021
Jianfeng Cao
Hong-Mei Yan
    SSeg
ArXivPDFHTML
Abstract

Semantic and instance segmentation algorithms are two general yet distinct image segmentation solutions powered by Convolution Neural Network. While semantic segmentation benefits extensively from the end-to-end training strategy, instance segmentation is frequently framed as a multi-stage task, supported by learning-based discrimination and post-process clustering. Independent optimizations on substages instigate the accumulation of segmentation errors. In this work, we propose to embed prior clustering information into an embedding learning framework FCRNet, stimulating the one-stage instance segmentation. FCRNet relieves the complexity of post process by incorporating the number of clustering groups into the embedding space. The superior performance of FCRNet is verified and compared with other methods on the nucleus dataset BBBC006.

View on arXiv
Comments on this paper