ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.15537
16
124

Cloth-Changing Person Re-identification from A Single Image with Gait Prediction and Regularization

29 March 2021
Xin Jin
Tianyu He
Kecheng Zheng
Zhiheng Yin
Xu Shen
Zhen Huang
Ruoyu Feng
Jianqiang Huang
Xiansheng Hua
Zhibo Chen
    CVBM
ArXivPDFHTML
Abstract

Cloth-Changing person re-identification (CC-ReID) aims at matching the same person across different locations over a long-duration, e.g., over days, and therefore inevitably meets challenge of changing clothing. In this paper, we focus on handling well the CC-ReID problem under a more challenging setting, i.e., just from a single image, which enables high-efficiency and latency-free pedestrian identify for real-time surveillance applications. Specifically, we introduce Gait recognition as an auxiliary task to drive the Image ReID model to learn cloth-agnostic representations by leveraging personal unique and cloth-independent gait information, we name this framework as GI-ReID. GI-ReID adopts a two-stream architecture that consists of a image ReID-Stream and an auxiliary gait recognition stream (Gait-Stream). The Gait-Stream, that is discarded in the inference for high computational efficiency, acts as a regulator to encourage the ReID-Stream to capture cloth-invariant biometric motion features during the training. To get temporal continuous motion cues from a single image, we design a Gait Sequence Prediction (GSP) module for Gait-Stream to enrich gait information. Finally, a high-level semantics consistency over two streams is enforced for effective knowledge regularization. Experiments on multiple image-based Cloth-Changing ReID benchmarks, e.g., LTCC, PRCC, Real28, and VC-Clothes, demonstrate that GI-ReID performs favorably against the state-of-the-arts. Codes are available at https://github.com/jinx-USTC/GI-ReID.

View on arXiv
Comments on this paper