ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.16449
20
50

Bilevel Online Adaptation for Out-of-Domain Human Mesh Reconstruction

30 March 2021
Shanyan Guan
Jingwei Xu
Yunbo Wang
Bingbing Ni
Xiaokang Yang
    3DH
ArXivPDFHTML
Abstract

This paper considers a new problem of adapting a pre-trained model of human mesh reconstruction to out-of-domain streaming videos. However, most previous methods based on the parametric SMPL model \cite{loper2015smpl} underperform in new domains with unexpected, domain-specific attributes, such as camera parameters, lengths of bones, backgrounds, and occlusions. Our general idea is to dynamically fine-tune the source model on test video streams with additional temporal constraints, such that it can mitigate the domain gaps without over-fitting the 2D information of individual test frames. A subsequent challenge is how to avoid conflicts between the 2D and temporal constraints. We propose to tackle this problem using a new training algorithm named Bilevel Online Adaptation (BOA), which divides the optimization process of overall multi-objective into two steps of weight probe and weight update in a training iteration. We demonstrate that BOA leads to state-of-the-art results on two human mesh reconstruction benchmarks.

View on arXiv
Comments on this paper