ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.00192
14
17

An Energy-Efficient Quad-Camera Visual System for Autonomous Machines on FPGA Platform

1 April 2021
Zishen Wan
Yuyang Zhang
A. Raychowdhury
Bo Yu
Haibin Ling
Shaoshan Liu
ArXivPDFHTML
Abstract

In our past few years' of commercial deployment experiences, we identify localization as a critical task in autonomous machine applications, and a great acceleration target. In this paper, based on the observation that the visual frontend is a major performance and energy consumption bottleneck, we present our design and implementation of an energy-efficient hardware architecture for ORB (Oriented-Fast and Rotated- BRIEF) based localization system on FPGAs. To support our multi-sensor autonomous machine localization system, we present hardware synchronization, frame-multiplexing, and parallelization techniques, which are integrated in our design. Compared to Nvidia TX1 and Intel i7, our FPGA-based implementation achieves 5.6x and 3.4x speedup, as well as 3.0x and 34.6x power reduction, respectively.

View on arXiv
Comments on this paper