ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.00897
41
10
v1v2v3 (latest)

FT-BLAS: A High Performance BLAS Implementation With Online Fault Tolerance

2 April 2021
Yujia Zhai
Elisabeth Giem
Quan Fan
Kai Zhao
Jinyang Liu
Zizhong Chen
    FedML
ArXiv (abs)PDFHTML
Abstract

Basic Linear Algebra Subprograms (BLAS) is a core library in scientific computing and machine learning. This paper presents FT-BLAS, a new implementation of BLAS routines that not only tolerates soft errors on the fly, but also provides comparable performance to modern state-of-the-art BLAS libraries on widely-used processors such as Intel Skylake and Cascade Lake. To accommodate the features of BLAS, which contains both memory-bound and computing-bound routines, we propose a hybrid strategy to incorporate fault tolerance into our brand-new BLAS implementation: duplicating computing instructions for memory-bound Level-1 and Level-2 BLAS routines and incorporating an Algorithm-Based Fault Tolerance mechanism for computing-bound Level-3 BLAS routines. Our high performance and low overhead are obtained from delicate assembly-level optimization and a kernel-fusion approach to the computing kernels. Experimental results demonstrate that FT-BLAS offers high reliability and high performance -- faster than Intel MKL, OpenBLAS, and BLIS by up to 3.50%, 22.14% and 21.70%, respectively, for routines spanning all three levels of BLAS we benchmarked, even under hundreds of errors injected per minute.

View on arXiv
Comments on this paper