ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.02144
10
59

A Concise Review of Transfer Learning

5 April 2021
Abolfazl Farahani
Behrouz Pourshojae
Khaled Rasheed
H. Arabnia
    CLL
ArXivPDFHTML
Abstract

The availability of abundant labeled data in recent years led the researchers to introduce a methodology called transfer learning, which utilizes existing data in situations where there are difficulties in collecting new annotated data. Transfer learning aims to boost the performance of a target learner by applying another related source data. In contrast to the traditional machine learning and data mining techniques, which assume that the training and testing data lie from the same feature space and distribution, transfer learning can handle situations where there is a discrepancy between domains and distributions. These characteristics give the model the potential to utilize the available related source data and extend the underlying knowledge to the target task achieving better performance. This survey paper aims to give a concise review of traditional and current transfer learning settings, existing challenges, and related approaches.

View on arXiv
Comments on this paper