ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.02667
8
10

Personalized Entity Resolution with Dynamic Heterogeneous Knowledge Graph Representations

6 April 2021
Ying Lin
H. Wang
Jiangning Chen
Tong Wang
Yue Liu
Heng Ji
Yang Liu
Premkumar Natarajan
ArXivPDFHTML
Abstract

The growing popularity of Virtual Assistants poses new challenges for Entity Resolution, the task of linking mentions in text to their referent entities in a knowledge base. Specifically, in the shopping domain, customers tend to use implicit utterances (e.g., "organic milk") rather than explicit names, leading to a large number of candidate products. Meanwhile, for the same query, different customers may expect different results. For example, with "add milk to my cart", a customer may refer to a certain organic product, while some customers may want to re-order products they regularly purchase. To address these issues, we propose a new framework that leverages personalized features to improve the accuracy of product ranking. We first build a cross-source heterogeneous knowledge graph from customer purchase history and product knowledge graph to jointly learn customer and product embeddings. After that, we incorporate product, customer, and history representations into a neural reranking model to predict which candidate is most likely to be purchased for a specific customer. Experiments show that our model substantially improves the accuracy of the top ranked candidates by 24.6% compared to the state-of-the-art product search model.

View on arXiv
Comments on this paper