237

Self-Supervised Learning for Gastritis Detection with Gastric X-ray Images

International Journal of Computer Assisted Radiology and Surgery (IJCARS), 2021
Guang Li
Ren Togo
Takahiro Ogawa
Abstract

Background and Objective: Manually annotating gastric X-ray images for gastritis detection is time-consuming and expensive because it typically requires expert knowledge. This paper proposes a self-supervised learning method to solve this problem. This study aims to verify the effectiveness of the proposed self-supervised learning method in gastritis detection using a few annotated gastric X-ray images. Methods: In this paper, we propose a novel self-supervised learning method that can perform explicit self-supervised learning and learn discriminative representations from gastric X-ray images. Models trained with the proposed method were fine-tuned on datasets with a few annotated gastric X-ray images. For comparison, several state-of-the-art self-supervised learning methods, i.e., containing SimSiam, BYOL, PIRL-jigsaw, PIRL-rotation, and SimCLR, were compared with the proposed method. Furthermore, two baseline methods, one pretrained on ImageNet and the other trained from scratch, were compared with the proposed method. Results: The proposed method's harmonic mean score of sensitivity and specificity after fine-tuning with the annotated data of 10, 20, 30, and 40 patients were 0.875, 0.911, 0.915, and 0.931, respectively. The proposed method outperformed all comparative methods, including the five state-of-the-art self-supervised learning and two baseline methods. Experimental results showed the effectiveness of the proposed method in gastritis detection with a few annotated gastric X-ray images. Conclusions: The proposed self-supervised learning method shows potential for clinical use in gastritis detection using a few annotated gastric X-ray images.

View on arXiv
Comments on this paper