ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.02962
4
12

DyGCN: Dynamic Graph Embedding with Graph Convolutional Network

7 April 2021
Zeyu Cui
Zekun Li
Shu Wu
Xiaoyu Zhang
Qiang Liu
Liang Wang
Mengmeng Ai
    GNN
ArXivPDFHTML
Abstract

Graph embedding, aiming to learn low-dimensional representations (aka. embeddings) of nodes, has received significant attention recently. Recent years have witnessed a surge of efforts made on static graphs, among which Graph Convolutional Network (GCN) has emerged as an effective class of models. However, these methods mainly focus on the static graph embedding. In this work, we propose an efficient dynamic graph embedding approach, Dynamic Graph Convolutional Network (DyGCN), which is an extension of GCN-based methods. We naturally generalizes the embedding propagation scheme of GCN to dynamic setting in an efficient manner, which is to propagate the change along the graph to update node embeddings. The most affected nodes are first updated, and then their changes are propagated to the further nodes and leads to their update. Extensive experiments conducted on various dynamic graphs demonstrate that our model can update the node embeddings in a time-saving and performance-preserving way.

View on arXiv
Comments on this paper