ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.03509
57
93
v1v2v3v4 (latest)

Py-Feat: Python Facial Expression Analysis Toolbox

8 April 2021
J. H. Cheong
Eshin Jolly
Tiankang Xie
Sophie Byrne
Matthew Kenney
Luke J. Chang
    CVBM
ArXiv (abs)PDFHTML
Abstract

Studying facial expressions is a notoriously difficult endeavor. Recent advances in the field of affective computing have yielded impressive progress in automatically detecting facial expressions from pictures and videos. However, much of this work has yet to be widely disseminated in social science domains such as psychology. Current state of the art models require considerable domain expertise that is not traditionally incorporated into social science training programs. Furthermore, there is a notable absence of user-friendly and open-source software that provides a comprehensive set of tools and functions that support facial expression research. In this paper, we introduce Py-Feat, an open-source Python toolbox that provides support for detecting, preprocessing, analyzing, and visualizing facial expression data. Py-Feat makes it easy for domain experts to disseminate and benchmark computer vision models and also for end users to quickly process, analyze, and visualize face expression data. We hope this platform will facilitate increased use of facial expression data in human behavior research.

View on arXiv
Comments on this paper