Joint Program and Layout Transformations to enable DNN Operators on Specialized Hardware based on Constraint Programming

The success of Deep Artificial Neural Networks (DNNs) in many domains created a rich body of research concerned with hardwareaccelerators for compute-intensive DNN operators. However, implementing such operators efficiently with complex hardwareintrinsics such as matrix multiply is a task not yet automated gracefully. Solving this task often requires joint program and data layouttransformations. First solutions to this problem have been proposed, such as TVM, UNIT or ISAMIR, which work on a loop-levelrepresentation of operators and specify data layout and possible program transformations before the embedding into the operator isperformed. This top-down approach creates a tension between exploration range and search space complexity, especially when alsoexploring data layout transformations such as im2col, channel packing or padding.In this work, we propose a new approach to this problem. We created a bottom-up method that allows the joint transformation ofboth compuation and data layout based on the found embedding. By formulating the embedding as a constraint satisfaction problemover the scalar dataflow, every possible embedding solution is contained in the search space. Adding additional constraints andoptmization targets to the solver generates the subset of preferable solutions.An evaluation using the VTA hardware accelerator with the Baidu DeepBench inference benchmark shows that our approach canautomatically generate code competitive to reference implementations. Further, we show that dynamically determining the data layoutbased on intrinsic and workload is beneficial for hardware utilization and performance. In cases where the reference implementationhas low hardware utilization due to its fixed deployment strategy, we achieve a geomean speedup of up to x2.813, while individualoperators can improve as much as x170.
View on arXiv