247
v1v2 (latest)

Learning from Censored and Dependent Data: The case of Linear Dynamics

Annual Conference Computational Learning Theory (COLT), 2021
Abstract

Observations from dynamical systems often exhibit irregularities, such as censoring, where values are recorded only if they fall within a certain range. Censoring is ubiquitous in practice, due to saturating sensors, limit-of-detection effects, and image-frame effects. In light of recent developments on learning linear dynamical systems (LDSs), and on censored statistics with independent data, we revisit the decades-old problem of learning an LDS, from censored observations (Lee and Maddala (1985); Zeger and Brookmeyer (1986)). Here, the learner observes the state xtRdx_t \in \mathbb{R}^d if and only if xtx_t belongs to some set StRdS_t \subseteq \mathbb{R}^d. We develop the first computationally and statistically efficient algorithm for learning the system, assuming only oracle access to the sets StS_t. Our algorithm, Stochastic Online Newton with Switching Gradients, is a novel second-order method that builds on the Online Newton Step (ONS) of Hazan et al. (2007). Our Switching-Gradient scheme does not always use (stochastic) gradients of the function we want to optimize, which we call "censor-aware" function. Instead, in each iteration, it performs a simple test to decide whether to use the censor-aware, or another "censor-oblivious" function, for getting a stochastic gradient. In our analysis, we consider a "generic" Online Newton method, which uses arbitrary vectors instead of gradients, and we prove an error-bound for it. This can be used to appropriately design these vectors, leading to our Switching-Gradient scheme. This framework significantly deviates from the recent long line of works on censored statistics (e.g., Daskalakis et al. (2018); Kontonis et al. (2019); Daskalakis et al. (2019)), which apply Stochastic Gradient Descent (SGD), and their analysis reduces to establishing conditions for off-the-shelf SGD-bounds.

View on arXiv
Comments on this paper