16
57

Recurrent Equilibrium Networks: Flexible Dynamic Models with Guaranteed Stability and Robustness

Abstract

This paper introduces recurrent equilibrium networks (RENs), a new class of nonlinear dynamical models} for applications in machine learning, system identification and control. The new model class admits ``built in'' behavioural guarantees of stability and robustness. All models in the proposed class are contracting -- a strong form of nonlinear stability -- and models can satisfy prescribed incremental integral quadratic constraints (IQC), including Lipschitz bounds and incremental passivity. RENs are otherwise very flexible: they can represent all stable linear systems, all previously-known sets of contracting recurrent neural networks and echo state networks, all deep feedforward neural networks, and all stable Wiener/Hammerstein models, and can approximate all fading-memory and contracting nonlinear systems. RENs are parameterized directly by a vector in R^N, i.e. stability and robustness are ensured without parameter constraints, which simplifies learning since \HL{generic methods for unconstrained optimization such as stochastic gradient descent and its variants can be used}. The performance and robustness of the new model set is evaluated on benchmark nonlinear system identification problems, and the paper also presents applications in data-driven nonlinear observer design and control with stability guarantees.

View on arXiv
Comments on this paper