ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.06142
19
11

Zeus: Efficiently Localizing Actions in Videos using Reinforcement Learning

6 April 2021
Pramod Chunduri
J. Bang
Yao Lu
Joy Arulraj
ArXivPDFHTML
Abstract

Detection and localization of actions in videos is an important problem in practice. State-of-the-art video analytics systems are unable to efficiently and effectively answer such action queries because actions often involve a complex interaction between objects and are spread across a sequence of frames; detecting and localizing them requires computationally expensive deep neural networks. It is also important to consider the entire sequence of frames to answer the query effectively. In this paper, we present ZEUS, a video analytics system tailored for answering action queries. We present a novel technique for efficiently answering these queries using deep reinforcement learning. ZEUS trains a reinforcement learning agent that learns to adaptively modify the input video segments that are subsequently sent to an action classification network. The agent alters the input segments along three dimensions - sampling rate, segment length, and resolution. To meet the user-specified accuracy target, ZEUS's query optimizer trains the agent based on an accuracy-aware, aggregate reward function. Evaluation on three diverse video datasets shows that ZEUS outperforms state-of-the-art frame- and window-based filtering techniques by up to 22.1x and 4.7x, respectively. It also consistently meets the user-specified accuracy target across all queries.

View on arXiv
Comments on this paper