ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.06559
58
36

Identity Inference on Blockchain using Graph Neural Network

14 April 2021
Jie Shen
Jiajun Zhou
Yunyi Xie
Shanqing Yu
Qi Xuan
ArXiv (abs)PDFHTML
Abstract

The anonymity of blockchain has accelerated the growth of illegal activities and criminal behaviors on cryptocurrency platforms. Although decentralization is one of the typical characteristics of blockchain, we urgently call for effective regulation to detect these illegal behaviors to ensure the safety and stability of user transactions. Identity inference, which aims to make a preliminary inference about account identity, plays a significant role in blockchain security. As a common tool, graph mining technique can effectively represent the interactive information between accounts and be used for identity inference. However, existing methods cannot balance scalability and end-to-end architecture, resulting high computational consumption and weak feature representation. In this paper, we present a novel approach to analyze user's behavior from the perspective of the transaction subgraph, which naturally transforms the identity inference task into a graph classification pattern and effectively avoids computation in large-scale graph. Furthermore, we propose a generic end-to-end graph neural network model, named I2BGNN\text{I}^2 \text{BGNN}I2BGNN, which can accept subgraph as input and learn a function mapping the transaction subgraph pattern to account identity, achieving de-anonymization. Extensive experiments on EOSG and ETHG datasets demonstrate that the proposed method achieve the state-of-the-art performance in identity inference.

View on arXiv
Comments on this paper