ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.07396
11
26

Node Co-occurrence based Graph Neural Networks for Knowledge Graph Link Prediction

15 April 2021
Dai Quoc Nguyen
Vinh Tong
Dinh Q. Phung
Dat Quoc Nguyen
    GNN
ArXivPDFHTML
Abstract

We introduce a novel embedding model, named NoGE, which aims to integrate co-occurrence among entities and relations into graph neural networks to improve knowledge graph completion (i.e., link prediction). Given a knowledge graph, NoGE constructs a single graph considering entities and relations as individual nodes. NoGE then computes weights for edges among nodes based on the co-occurrence of entities and relations. Next, NoGE proposes Dual Quaternion Graph Neural Networks (DualQGNN) and utilizes DualQGNN to update vector representations for entity and relation nodes. NoGE then adopts a score function to produce the triple scores. Comprehensive experimental results show that NoGE obtains state-of-the-art results on three new and difficult benchmark datasets CoDEx for knowledge graph completion.

View on arXiv
Comments on this paper