ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.07838
34
27

Investigating Failures of Automatic Translation in the Case of Unambiguous Gender

16 April 2021
Adithya Renduchintala
Adina Williams
ArXivPDFHTML
Abstract

Transformer based models are the modern work horses for neural machine translation (NMT), reaching state of the art across several benchmarks. Despite their impressive accuracy, we observe a systemic and rudimentary class of errors made by transformer based models with regards to translating from a language that doesn't mark gender on nouns into others that do. We find that even when the surrounding context provides unambiguous evidence of the appropriate grammatical gender marking, no transformer based model we tested was able to accurately gender occupation nouns systematically. We release an evaluation scheme and dataset for measuring the ability of transformer based NMT models to translate gender morphology correctly in unambiguous contexts across syntactically diverse sentences. Our dataset translates from an English source into 20 languages from several different language families. With the availability of this dataset, our hope is that the NMT community can iterate on solutions for this class of especially egregious errors.

View on arXiv
Comments on this paper