ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.07908
13
31

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning

16 April 2021
Mengzhou Xia
Guoqing Zheng
Subhabrata Mukherjee
Milad Shokouhi
Graham Neubig
Ahmed Hassan Awadallah
ArXivPDFHTML
Abstract

The combination of multilingual pre-trained representations and cross-lingual transfer learning is one of the most effective methods for building functional NLP systems for low-resource languages. However, for extremely low-resource languages without large-scale monolingual corpora for pre-training or sufficient annotated data for fine-tuning, transfer learning remains an under-studied and challenging task. Moreover, recent work shows that multilingual representations are surprisingly disjoint across languages, bringing additional challenges for transfer onto extremely low-resource languages. In this paper, we propose MetaXL, a meta-learning based framework that learns to transform representations judiciously from auxiliary languages to a target one and brings their representation spaces closer for effective transfer. Extensive experiments on real-world low-resource languages - without access to large-scale monolingual corpora or large amounts of labeled data - for tasks like cross-lingual sentiment analysis and named entity recognition show the effectiveness of our approach. Code for MetaXL is publicly available at github.com/microsoft/MetaXL.

View on arXiv
Comments on this paper