ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.08145
11
28

KI-BERT: Infusing Knowledge Context for Better Language and Domain Understanding

9 April 2021
Keyur Faldu
A. Sheth
Prashant Kikani
Hemang Akabari
ArXivPDFHTML
Abstract

Contextualized entity representations learned by state-of-the-art transformer-based language models (TLMs) like BERT, GPT, T5, etc., leverage the attention mechanism to learn the data context from training data corpus. However, these models do not use the knowledge context. Knowledge context can be understood as semantics about entities and their relationship with neighboring entities in knowledge graphs. We propose a novel and effective technique to infuse knowledge context from multiple knowledge graphs for conceptual and ambiguous entities into TLMs during fine-tuning. It projects knowledge graph embeddings in the homogeneous vector-space, introduces new token-types for entities, aligns entity position ids, and a selective attention mechanism. We take BERT as a baseline model and implement the "Knowledge-Infused BERT" by infusing knowledge context from ConceptNet and WordNet, which significantly outperforms BERT and other recent knowledge-aware BERT variants like ERNIE, SenseBERT, and BERT_CS over eight different subtasks of GLUE benchmark. The KI-BERT-base model even significantly outperforms BERT-large for domain-specific tasks like SciTail and academic subsets of QQP, QNLI, and MNLI.

View on arXiv
Comments on this paper