ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.08259
12
0

Context-Adaptive Document-Level Neural Machine Translation

16 April 2021
Linlin Zhang
ArXivPDFHTML
Abstract

Most existing document-level neural machine translation (NMT) models leverage a fixed number of the previous or all global source sentences to handle the context-independent problem in standard NMT. However, the translating of each source sentence benefits from various sizes of context, and inappropriate context may harm the translation performance. In this work, we introduce a data-adaptive method that enables the model to adopt the necessary and useful context. Specifically, we introduce a light predictor into two document-level translation models to select the explicit context. Experiments demonstrate the proposed approach can significantly improve the performance over the previous methods with a gain up to 1.99 BLEU points.

View on arXiv
Comments on this paper