ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.08687
61
2
v1v2v3v4 (latest)

A central limit theorem for the Benjamini-Hochberg false discovery proportion under a factor model

18 April 2021
Dan M. Kluger
Art B. Owen
ArXiv (abs)PDFHTML
Abstract

The Benjamini-Hochberg (BH) procedure remains widely popular despite having limited theoretical guarantees in the commonly encountered scenario of correlated test statistics. Of particular concern is the possibility that the method could exhibit bursty behavior, meaning that it might typically yield no false discoveries while occasionally yielding both a large number of false discoveries and a false discovery proportion (FDP) that far exceeds its own well controlled mean. In this paper, we investigate which test statistic correlation structures lead to bursty behavior and which ones lead to well controlled FDPs. To this end, we develop a central limit theorem for the FDP in a multiple testing setup where the test statistic correlations can be either short-range or long-range as well as either weak or strong. The theorem and our simulations from a data-driven factor model suggest that the BH procedure exhibits severe burstiness when the test statistics have many strong, long-range correlations, but does not otherwise.

View on arXiv
Comments on this paper