ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.08721
8
0

Embedding-Enhanced Giza++: Improving Alignment in Low- and High- Resource Scenarios Using Embedding Space Geometry

18 April 2021
Kelly Marchisio
Conghao Xiong
Philipp Koehn
ArXivPDFHTML
Abstract

A popular natural language processing task decades ago, word alignment has been dominated until recently by GIZA++, a statistical method based on the 30-year-old IBM models. New methods that outperform GIZA++ primarily rely on large machine translation models, massively multilingual language models, or supervision from GIZA++ alignments itself. We introduce Embedding-Enhanced GIZA++, and outperform GIZA++ without any of the aforementioned factors. Taking advantage of monolingual embedding spaces of source and target language only, we exceed GIZA++'s performance in every tested scenario for three languages pairs. In the lowest-resource setting, we outperform GIZA++ by 8.5, 10.9, and 12 AER for Ro-En, De-En, and En-Fr, respectively. We release our code at https://github.com/kellymarchisio/ee-giza.

View on arXiv
Comments on this paper