ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.11435
15
12

TricubeNet: 2D Kernel-Based Object Representation for Weakly-Occluded Oriented Object Detection

23 April 2021
Beomyoung Kim
Janghyeon Lee
Sihaeng Lee
Doyeon Kim
Junmo Kim
ArXivPDFHTML
Abstract

We present a novel approach for oriented object detection, named TricubeNet, which localizes oriented objects using visual cues (i.e.,i.e.,i.e., heatmap) instead of oriented box offsets regression. We represent each object as a 2D Tricube kernel and extract bounding boxes using simple image-processing algorithms. Our approach is able to (1) obtain well-arranged boxes from visual cues, (2) solve the angle discontinuity problem, and (3) can save computational complexity due to our anchor-free modeling. To further boost the performance, we propose some effective techniques for size-invariant loss, reducing false detections, extracting rotation-invariant features, and heatmap refinement. To demonstrate the effectiveness of our TricubeNet, we experiment on various tasks for weakly-occluded oriented object detection: detection in an aerial image, densely packed object image, and text image. The extensive experimental results show that our TricubeNet is quite effective for oriented object detection. Code is available at https://github.com/qjadud1994/TricubeNet.

View on arXiv
Comments on this paper