ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.11576
23
11

Automating Cyber Threat Hunting Using NLP, Automated Query Generation, and Genetic Perturbation

23 April 2021
P. Karuna
Erik Hemberg
Una-May O’Reilly
Nick Rutar
ArXivPDFHTML
Abstract

Scaling the cyber hunt problem poses several key technical challenges. Detecting and characterizing cyber threats at scale in large enterprise networks is hard because of the vast quantity and complexity of the data that must be analyzed as adversaries deploy varied and evolving tactics to accomplish their goals. There is a great need to automate all aspects, and, indeed, the workflow of cyber hunting. AI offers many ways to support this. We have developed the WILEE system that automates cyber threat hunting by translating high-level threat descriptions into many possible concrete implementations. Both the (high-level) abstract and (low-level) concrete implementations are represented using a custom domain specific language (DSL). WILEE uses the implementations along with other logic, also written in the DSL, to automatically generate queries to confirm (or refute) any hypotheses tied to the potential adversarial workflows represented at various layers of abstraction.

View on arXiv
Comments on this paper