ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.11725
11
5

SpectralFly: Ramanujan Graphs as Flexible and Efficient Interconnection Networks

23 April 2021
Stephen J. Young
Sinan G. Aksoy
J. Firoz
R. Gioiosa
Tobias Hagge
Mark Kempton
Juan Escobedo
Mark Raugas
ArXivPDFHTML
Abstract

In recent years, graph theoretic considerations have become increasingly important in the design of HPC interconnection topologies. One approach is to seek optimal or near-optimal families of graphs with respect to a particular graph theoretic property, such as diameter. In this work, we consider topologies which optimize the spectral gap. We study a novel HPC topology, SpectralFly, designed around the Ramanujan graph construction of Lubotzky, Phillips, and Sarnak (LPS). We show combinatorial properties, such as diameter, bisection bandwidth, average path length, and resilience to link failure, of SpectralFly topologies are better than, or comparable to, similarly constrained DragonFly, SlimFly, and BundleFly topologies. Additionally, we simulate the performance of SpectralFly on a representative sample of micro-benchmarks using the Structure Simulation Toolkit Macroscale Element Library simulator and study cost-minimizing layouts, demonstrating considerable benefit of the SpectralFly topology.

View on arXiv
Comments on this paper