ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.14468
21
1
v1v2v3 (latest)

Star DGT: a Robust Gabor Transform for Speech Denoising

29 April 2021
Vicky Kouni
Holger Rauhut
Theoharis Theoharis
ArXiv (abs)PDFHTML
Abstract

In this paper, we address the speech denoising problem, where Gaussian, pink and blue additive noises are to be removed from a given speech signal. Our approach is based on a redundant, analysis-sparse representation of the original speech signal. We pick an eigenvector of the Zauner unitary matrix and -- under certain assumptions on the ambient dimension -- we use it as window vector to generate a spark deficient Gabor frame. The analysis operator associated with such a frame, is a (highly) redundant Gabor transform, which we use as a sparsifying transform in denoising procedure. We conduct computational experiments on real-world speech data, using as baseline three Gabor transforms generated by state-of-the-art window vectors in time-frequency analysis and compare their performance to the proposed Gabor transform. The results show that our proposed redundant Gabor transform outperforms all others, consistently for all signals.

View on arXiv
Comments on this paper