ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.14929
9
6

On In-network learning. A Comparative Study with Federated and Split Learning

30 April 2021
Matei Moldoveanu
A. Zaidi
    FedML
ArXivPDFHTML
Abstract

In this paper, we consider a problem in which distributively extracted features are used for performing inference in wireless networks. We elaborate on our proposed architecture, which we herein refer to as "in-network learning", provide a suitable loss function and discuss its optimization using neural networks. We compare its performance with both Federated- and Split learning; and show that this architecture offers both better accuracy and bandwidth savings.

View on arXiv
Comments on this paper