ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.05758
21
12

DEEMD: Drug Efficacy Estimation against SARS-CoV-2 based on cell Morphology with Deep multiple instance learning

10 May 2021
M. Saberian
Kathleen P. Moriarty
A. Olmstead
Christian Hallgrimson
Franccois Jean
I. Nabi
Maxwell W. Libbrecht
Ghassan Hamarneh
ArXivPDFHTML
Abstract

Drug repurposing can accelerate the identification of effective compounds for clinical use against SARS-CoV-2, with the advantage of pre-existing clinical safety data and an established supply chain. RNA viruses such as SARS-CoV-2 manipulate cellular pathways and induce reorganization of subcellular structures to support their life cycle. These morphological changes can be quantified using bioimaging techniques. In this work, we developed DEEMD: a computational pipeline using deep neural network models within a multiple instance learning framework, to identify putative treatments effective against SARS-CoV-2 based on morphological analysis of the publicly available RxRx19a dataset. This dataset consists of fluorescence microscopy images of SARS-CoV-2 non-infected cells and infected cells, with and without drug treatment. DEEMD first extracts discriminative morphological features to generate cell morphological profiles from the non-infected and infected cells. These morphological profiles are then used in a statistical model to estimate the applied treatment efficacy on infected cells based on similarities to non-infected cells. DEEMD is capable of localizing infected cells via weak supervision without any expensive pixel-level annotations. DEEMD identifies known SARS-CoV-2 inhibitors, such as Remdesivir and Aloxistatin, supporting the validity of our approach. DEEMD can be explored for use on other emerging viruses and datasets to rapidly identify candidate antiviral treatments in the future}. Our implementation is available online at https://www.github.com/Sadegh-Saberian/DEEMD

View on arXiv
Comments on this paper