The Power of the Weisfeiler-Leman Algorithm for Machine Learning with Graphs

Abstract
In recent years, algorithms and neural architectures based on the Weisfeiler-Leman algorithm, a well-known heuristic for the graph isomorphism problem, emerged as a powerful tool for (supervised) machine learning with graphs and relational data. Here, we give a comprehensive overview of the algorithm's use in a machine learning setting. We discuss the theoretical background, show how to use it for supervised graph- and node classification, discuss recent extensions, and its connection to neural architectures. Moreover, we give an overview of current applications and future directions to stimulate research.
View on arXivComments on this paper