ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.06300
20
7

Privacy Inference Attacks and Defenses in Cloud-based Deep Neural Network: A Survey

13 May 2021
Xiaoyu Zhang
Chao Chen
Yi Xie
Xiaofeng Chen
Jun Zhang
Yang Xiang
    FedML
ArXivPDFHTML
Abstract

Deep Neural Network (DNN), one of the most powerful machine learning algorithms, is increasingly leveraged to overcome the bottleneck of effectively exploring and analyzing massive data to boost advanced scientific development. It is not a surprise that cloud computing providers offer the cloud-based DNN as an out-of-the-box service. Though there are some benefits from the cloud-based DNN, the interaction mechanism among two or multiple entities in the cloud inevitably induces new privacy risks. This survey presents the most recent findings of privacy attacks and defenses appeared in cloud-based neural network services. We systematically and thoroughly review privacy attacks and defenses in the pipeline of cloud-based DNN service, i.e., data manipulation, training, and prediction. In particular, a new theory, called cloud-based ML privacy game, is extracted from the recently published literature to provide a deep understanding of state-of-the-art research. Finally, the challenges and future work are presented to help researchers to continue to push forward the competitions between privacy attackers and defenders.

View on arXiv
Comments on this paper