ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.06679
17
4

Dynamic Multi-Branch Layers for On-Device Neural Machine Translation

14 May 2021
Zhixing Tan
Zeyuan Yang
Meng Zhang
Qun Liu
Maosong Sun
Yang Liu
    AI4CE
ArXivPDFHTML
Abstract

With the rapid development of artificial intelligence (AI), there is a trend in moving AI applications, such as neural machine translation (NMT), from cloud to mobile devices. Constrained by limited hardware resources and battery, the performance of on-device NMT systems is far from satisfactory. Inspired by conditional computation, we propose to improve the performance of on-device NMT systems with dynamic multi-branch layers. Specifically, we design a layer-wise dynamic multi-branch network with only one branch activated during training and inference. As not all branches are activated during training, we propose shared-private reparameterization to ensure sufficient training for each branch. At almost the same computational cost, our method achieves improvements of up to 1.7 BLEU points on the WMT14 English-German translation task and 1.8 BLEU points on the WMT20 Chinese-English translation task over the Transformer model, respectively. Compared with a strong baseline that also uses multiple branches, the proposed method is up to 1.5 times faster with the same number of parameters.

View on arXiv
Comments on this paper