ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.06987
12
18

Scaling Ensemble Distribution Distillation to Many Classes with Proxy Targets

14 May 2021
Max Ryabinin
A. Malinin
Mark J. F. Gales
    UQCV
ArXivPDFHTML
Abstract

Ensembles of machine learning models yield improved system performance as well as robust and interpretable uncertainty estimates; however, their inference costs may often be prohibitively high. \emph{Ensemble Distribution Distillation} is an approach that allows a single model to efficiently capture both the predictive performance and uncertainty estimates of an ensemble. For classification, this is achieved by training a Dirichlet distribution over the ensemble members' output distributions via the maximum likelihood criterion. Although theoretically principled, this criterion exhibits poor convergence when applied to large-scale tasks where the number of classes is very high. In our work, we analyze this effect and show that the Dirichlet log-likelihood criterion classes with low probability induce larger gradients than high-probability classes. This forces the model to focus on the distribution of the ensemble tail-class probabilities. We propose a new training objective that minimizes the reverse KL-divergence to a \emph{Proxy-Dirichlet} target derived from the ensemble. This loss resolves the gradient issues of Ensemble Distribution Distillation, as we demonstrate both theoretically and empirically on the ImageNet and WMT17 En-De datasets containing 1000 and 40,000 classes, respectively.

View on arXiv
Comments on this paper