ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.07561
14
63

Layerwise Optimization by Gradient Decomposition for Continual Learning

17 May 2021
Shixiang Tang
Dapeng Chen
Jinguo Zhu
Shijie Yu
Wanli Ouyang
    CLL
ArXivPDFHTML
Abstract

Deep neural networks achieve state-of-the-art and sometimes super-human performance across various domains. However, when learning tasks sequentially, the networks easily forget the knowledge of previous tasks, known as "catastrophic forgetting". To achieve the consistencies between the old tasks and the new task, one effective solution is to modify the gradient for update. Previous methods enforce independent gradient constraints for different tasks, while we consider these gradients contain complex information, and propose to leverage inter-task information by gradient decomposition. In particular, the gradient of an old task is decomposed into a part shared by all old tasks and a part specific to that task. The gradient for update should be close to the gradient of the new task, consistent with the gradients shared by all old tasks, and orthogonal to the space spanned by the gradients specific to the old tasks. In this way, our approach encourages common knowledge consolidation without impairing the task-specific knowledge. Furthermore, the optimization is performed for the gradients of each layer separately rather than the concatenation of all gradients as in previous works. This effectively avoids the influence of the magnitude variation of the gradients in different layers. Extensive experiments validate the effectiveness of both gradient-decomposed optimization and layer-wise updates. Our proposed method achieves state-of-the-art results on various benchmarks of continual learning.

View on arXiv
Comments on this paper