ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.07688
35
41
v1v2 (latest)

OntoEA: Ontology-guided Entity Alignment via Joint Knowledge Graph Embedding

17 May 2021
Yuejia Xiang
Ziheng Zhang
Jiaoyan Chen
Xi Chen
Zhenxi Lin
Yefeng Zheng
ArXiv (abs)PDFHTML
Abstract

Semantic embedding has been widely investigated for aligning knowledge graph (KG) entities. Current methods have explored and utilized the graph structure, the entity names and attributes, but ignore the ontology (or ontological schema) which contains critical meta information such as classes and their membership relationships with entities. In this paper, we propose an ontology-guided entity alignment method named OntoEA, where both KGs and their ontologies are jointly embedded, and the class hierarchy and the class disjointness are utilized to avoid false mappings. Extensive experiments on seven public and industrial benchmarks have demonstrated the state-of-the-art performance of OntoEA and the effectiveness of the ontologies.

View on arXiv
Comments on this paper