ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.08237
13
5

Towards Unsupervised Sketch-based Image Retrieval

18 May 2021
Conghui Hu
Yongxin Yang
Yunpeng Li
Timothy M. Hospedales
Yi-Zhe Song
ArXivPDFHTML
Abstract

The practical value of existing supervised sketch-based image retrieval (SBIR) algorithms is largely limited by the requirement for intensive data collection and labeling. In this paper, we present the first attempt at unsupervised SBIR to remove the labeling cost (both category annotations and sketch-photo pairings) that is conventionally needed for training. Existing single-domain unsupervised representation learning methods perform poorly in this application, due to the unique cross-domain (sketch and photo) nature of the problem. We therefore introduce a novel framework that simultaneously performs sketch-photo domain alignment and semantic-aware representation learning. Technically this is underpinned by introducing joint distribution optimal transport (JDOT) to align data from different domains, which we extend with trainable cluster prototypes and feature memory banks to further improve scalability and efficacy. Extensive experiments show that our framework achieves excellent performance in the new unsupervised setting, and performs comparably or better than state-of-the-art in the zero-shot setting.

View on arXiv
Comments on this paper